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Abstract: An efficient method for the alkylation of triflates with alkynyl- 
lithium reagents is described and the successful application of the method 
to the total synthesis of (+)-panaxacol is exemplified. 

Recently, we reported an efficient method for carbon-carbon bond 

formation at the carbon center bearing B-oxygen functions via trifluoro- 

methanesulfonate (triflate) derivatives. 2 In the course of our studies to 

explore the synthetic utility of this technology in natural product 

synthesis, we found that the triflates are indeed very reactive substrates 

for the alkylation with acetylenic nucleophiles. 

As previously noted in the literature,3 

alkynyllithium reagents on tosylates or iodides 

does not proceed very well. However, Carling 

shown that the corresponding triflates can act 

Apart from this preliminary study, there are no 

of this type of transformation in natural product synthesis. 

Our initial investigations (Scheme 1) revealed that the reaction of 1 

with 2 in THF gave the desired coupling product 3, but the reaction was 

the coupling reaction of 

bearing B-oxygen functions 

and Holmes have recently 

as a reactive substrate. 4 

reports of the general use 

Scheme 1 

OTf + Liflo+ + - O$i+ 

1 2 

Solvent Reaction 
conditiolg 

TRF-DMPU (6 : 1) -20 OC, 10 min 

TRF-HMPA (6 : 1) -20 'C, 18 min 

TRF only rt, 14 h 

3 

Yield, 96 

67 

76 

60 
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slow and the yield was only 60%. After the examination of various reaction 

conditions to improve the product yield, the mixed solvent system employing 

THF-dimethylpropyleneurea (DMPU)5 (6:l ratio') was found to be the best: the 

reaction proceeded cleanly at -20 OC within 10 min to afford 3 in 87% yield 

(Scheme 1).6 Some other successful results are shown in the Table. 

Table. Coupling Reactions of Triflates with Alkynyllithium Reagentsa 

Entry Substrate Li+Rb Reaction Product Yield, %' 
conditions 

1 a 0 Tf 
2 -78 "C, 2 h 

2 1 Li -_C6H,3 -20 "C, 15 min 

3 1 Li = =TMSd -20 "C, 30 min 

4 

Tf 

XXz . Tf 
Li GPh -20 'C, 10 min 

5 cc OTf 

. OTs 
2 -20 'C, 5 min 

6 2 0 “C, 6:5 h 

aAll reactions were performed in THF-DMPU (6:l). 
bUnless otherwise noted the reagent was prepared from the starting alkyne 
derivatives by treatment with 1.0 equiv. of n-BuLi at 0 OC. 
'Overall yield of chromatographed pure product from the starting alcohol. 
dPrepared from l,&bis(trimethylsilyl)-1,3-butadiyne by treatment with 1.0 
equiv. of MeLi: see ref 7. 
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The Table reveals that the present method is effective in introducing 

the alkyne unit into the carbon center bearing B-oxygen functions. In 

addition, the chemoselectivity was observed (Entry 5) when the exclusive 

substitution on the triflate occurred. In a case (Entry 3) only an ene- 

diyne compound, formed by S-elimination' of the initial coupling product 

and deprotection of trimethylsilyl group,9 was isolated after the 

conventional aqueous treatment. 

In order to demonstrate the utility of this reaction we performed the 

short-step synthesis of panaxacol (9) (Scheme 2), an anticancer compound 

isolated from the callus of Panax gingeng. 10 

8 Panaxacol(9) 

(a) (CSH13)2C!uLi, THF-Ye2S, -15 *C, 1.5 h; (b) Tf20, Et3N, CH2C12, -15 'C, 

PSiMe2But 

15 min; (c) HCEC-CGC-CHCH2CH3 (6), n-BuLi, THF-BMPU, -20 'C, 30 min; 

(d) n-Bu4NF, THF, rt, 30 min; (e) (COC1)2, DMSO, IT-IF, -78 'C, 1 h, then 

Et3N, -78 'C +rt, 1 h; (f) 2N HCl, MeOH, rt, 22 h. 

The introduction of hexyl group on the monotosylate 42a was achieved 

conveniently by the action of 6 equiv. of (C6H13)2CuLi in THF-Me2S (1:l) 

to give the alcohol 5 in 81% yield. Triflation followed by reaction with 

1.5 equiv. of 6” in THF-DMPU (6:l) gave cleanly 7 as a diastereomeric 

mixture in 80% yield. After removal of the silyl group, Swern oxidation 

afforded the ketone 8 in 55% yield. Finally, acid hydrolysis of 8 provided 

(+)-panaxacol (9) in 92% yield. A comparison of its specific rotation 

( [cxI’~D +21.3'(c 0.76, MeOH)) 
MeOH))loa 

with literature data ([u]~~, t19.5" (c 1.0, 

confirmed its correct absolute configuration. The spectral data 

(IR, 'H and j3C NMR) were in good agreement with those of an authentic 

sample kindly provided by Prof. Fujimoto. Thus, readily available chiral 

compound 4 was efficiently converted to panaxacol (9) through a simple six- 

step sequence in 32.8% overall yield. 
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In conclusion, the results presented here clearly illustrate the 

usefulness of chiral triflate methodology. Further work for applying this 

method to the other biologically interesting natural products is currently 

under investigation. 
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